Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development
نویسندگان
چکیده
Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.
منابع مشابه
Impaired intervertebral disc formation in the absence of Jun.
Jun is a major component of the heterodimeric transcription factor AP-1 and is essential for embryonic development, as foetuses that lack Jun die at mid-gestation. Ubiquitous mosaic inactivation of a conditional Jun allele by cre/LoxP-mediated recombination was used to screen for novel functions of Jun and revealed that its absence results in severe malformations of the axial skeleton. More-spe...
متن کاملIn Vitro Model System To Study The Molecular Mechanism Of Intervertebral Disc Growth And Development
INTRODUCTION: Degenerative disc disease afflicts 1 in 7 adults and is the leading cause of disability and back pain. However the molecular signals that guide the normal disc development, as well as the molecular signals involved in disc degeneration are not well defined. We have standardized a model system to study these processes during the postnatal development of mouse disc. The intervertebr...
متن کاملSonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs
The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in the middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nu...
متن کاملNotochord Cells in Intervertebral Disc Development and Degeneration
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent d...
متن کاملFoxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs
The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there e...
متن کامل